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Our model

The model in the talk is the hyperbolic Anderson Model
(HAM) 

∂2u
∂t2 (t , x) = ∆u(t , x) + Ẇ (x)u(t , x)

u(0, x) = 1 and
∂u
∂t

(0, x) = 0 x ∈ Rd

where {Ẇ (x); x ∈ Rd} is a mean-zero generalized stationary
Gaussian field such that

Cov
(
Ẇ(x), Ẇ(y)

)
= γ(x − y) x, y ∈ Rd

with γ(·) ≥ 0. In this talk, d = 1,2,3.
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Set-up of our model

Roughly speaking, our system can be viewed as the
approximation of its smoothed version where Ẇ is replaced by
Ẇϵ.

More precisely, the hyperbolic Anderson equation is
defined by following mild equation

u(t, x) = 1 +

∫ t

0

∫
Rd

G(t − s, x − y)u(s, y)W(dy)ds

where the stochastic integral on the right hand side is defined in
the sense of Stratanovich, i.e., a proper limit of∫ t

0

∫
Rd

G(t − s, x − y)u(s, y)Ẇϵ(x)ds (as ϵ → 0+)
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Mathematical set-up

and G(t, x) is the fundamental solution defined by the
deterministic wave equation

∂2G
∂t2

(t, x) = ∆G(t, x)

G(0, x) = 0 and
∂G
∂t

(0, x) = δ0(x) x ∈ Rd

Our challenge, limitation and opportunity in this talk closely
related to some unique natures of G(t, x), which will appear in
later discussion.
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Chaos expansion

Iterating the mild equation infinite times we formally have

u(t, x) =
∞∑

n=0

Sn(t, x)

with I0(t, x) = 1 and the recurrent relation

Sn+1(t, x) =
∫ t

0

∫
Rd

G(t − s, x − y)Sn(s, y)W(dy)ds

Chen (Dept of Mathematics, UTK) Hyperbolic Anderson equation
The 19th workshop on Markov Processes and Related Topics, Fuzhou
5 / 62



Chaos expansion

Iterating this relation we have

Sn(t, x)

=

∫
(Rd)n

[ ∫
[0,t]n<

ds
( n∏

k=1

G(sk − sk−1, xk − xk−1)

)]
W(dx1) · · ·W(dxn)

where

[0, t]n< =
{
(s1, · · · , sn) ∈ [0, t]n; s1 < · · · < sn

}
and we adapt the conventions x0 = x and s0 = 0.
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Set-up of our model

Essentially, the expansion (known as Dalang-Mueller-Tribe
(2008) representation)

u(t, x) =
∞∑

n=0

Sn(t, x)

is a stochastic version of what is called Feynman-Kac formula
and is formulated by Dalang, Mueller and Tribe (2008).

We recently proved that this expansion L2-converges, and
solves the hyperbolic Anerson equation under the Dalang’s
condition ∫

Rd

1
1 + |ξ|2

µ(dξ) < ∞
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Set-up of our model

where µ(dξ) is the spectral measure of the covariance function
γ(·) determined by the relation

γ(x) =
∫
Rd

eiξ·xµ(dξ) x ∈ Rd

Prior to our progress, Balan (2022) had reached the same
conclusion under a more restrictive condition∫

Rd

(
1

1 + |ξ|2

)1/2

µ(dξ) < ∞
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In this talk, our attention is on the intermittency of the
system, i.e., the asymptotic behavior of the integer moments

E up(t, x) or E |u(t, x)|p

as t → ∞ or p → ∞. In the remaining of the talk, we assume the
homogeinity

γ(cx) = c−αγ(x) c > 0, x ∈ Rd

for some α > 0.
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In this case, Dalang’s condition requests 0 < α < 2. In
addtion, the fact that γ(·) is non-negative and non-negative
definitive (as co-variance function) requires α ≤ d. The only
setting where α = d is allowed under the Dalang’s condition is
when d = 1 = α–the setting of 1-dimensional space white noise.

Other important special cases covered by the homogeinity
condition are the settings of fractional noise where

γ(x) = CH

d∏
j=1

|xj|2Hj−2

with Hj > 1/2 and

α ≡ 2d − 2
d∑

j=1

Hj < 2

and of the Newton’s potential

γ(x) = |x|−α
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Main theorem

Theorem (Chen-Hu)
Assume that 0 < α < 2 ∧ d or that d = 1 = α. Then

lim
t→∞

t−
4−α
3−α log E up(t, x) =

3 − α

2
p

4−α
3−α

(
2M1/2

4 − α

) 4−α
3−α

for any p = 1,2, · · · , and

lim
p→∞

p− 4−α
3−α log E |u(t, x)|p = 3 − α

2
t

4−α
3−α

(
2M1/2

4 − α

) 4−α
3−α

for any t > 0. where

M = sup
g∈Fd

{(∫
Rd×Rd

γ(x − y)g2(x)g2(y)dxdy
)1/2

−
∫
Rd
|∇g(x)|2dx

}
and Fd =

{
g ∈ W1,2(Rd); ∥g∥2 = 1

}
.
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Corollary

Corollary. When Ẇ(x) (x ∈ R) is an 1-dimensional white noise
(i.e., γ(·) = δ0(·)), where α = d = 1,

lim
t→∞

t−3/2 log E up(t, x) =
1
2

4

√
3
4

p3/2 p = 1,2, · · · .

lim
p→∞

p−3/2 log E |u(t, x)|p = 1
2

4

√
3
4

t3/2 ∀t > 0
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Remark.

In recent work by Balan, R., Chen, L. and Chen, X. (2022),
the same p-limit and a slighly different t-limit

lim
t→∞

t−
4−α
3−α log E |u(t, x)|p = 3 − α

2
p(p − 1)

1
3−α

(
2M1/2

4 − α

) 4−α
3−α

are obtained in Skorokhod regime, under the condition
0 < α < 3.
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Chaos expansion

We only prove the large-t part. First, under our intial
codition u(t, x) is stationary in x. So we make x = 0 in our proof.
From

u(t,0) =
∞∑

n=0

Sn(t,0)

we have

E up(t,0) =
∞∑

n=0

∑
l1+···+lp=n

E
p∏

j=1

Slj(t,0)

=
∞∑

n=0

∑
l1+···+lp=2n

E
p∏

j=1

Slj(t,0) =
∞∑

n=0

t(4−α)n
∑

l1+···+lp=2n

E
p∏

j=1

Slj(1,0)

where the last step follows from scaling.
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Series decomposition of E up(t , x)
Assume that we can prove

lim
n→∞

1
n
log(n!)3−α

( ∑
l1+···+lp=2n

E
p∏

j=1

Slj(1,0)
)

= log
(1

2

)3−α

p4−α

(
2M1/2

4 − α

)4−α

Then the proof is completed by the computation

lim
t→∞

t−
4−α
3−α log

∞∑
n=0

t(4−α)n
( ∑

l1+···+lp=2n

E
p∏

j=1

Slj(1,0)
)

= lim
t→∞

t−
4−α
3−α log

∞∑
n=0

t(4−α)n

(n!)3−α

((1
2

)3−α

p4−α

(
2M1/2

4 − α

)4−α)n

=
3 − α

2
p

4−α
3−α

(2M1/2

4 − α

) 4−α
3−α
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Reduction to high moment asymptotics
where the last step follows from the elementary fact that

lim
t→∞

t−1/γ log
∞∑

n=0

θntn

(n!)γ
= γθ1/γ (θ, γ > 0)

with γ = 3 − α and t being replaced by t4−α.

In summary, the proof of our theorem is reduced to the
proof of

lim
n→∞

1
n
log(n!)3−α

( ∑
l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
)

= log
(1

2

)3−α

p4−α

(
2M1/2

4 − α

)4−α
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Where is Feynman-Kac formula?

A similar but much more understood system is the
parabolic Anderson model (PAM), where the time derivative
∂2u/∂t2 is replaced by ∂u/∂t . For PAM, we have the
Feynman-Kac representation

Eup(t ,0) = E 0 exp

{
1
2

p∑
j,k=1

∫ t

0

∫ t

0
γ
(
B(s)− B(r)

)
dsdr

}
or ∑

l1+···+lp=2n

E
p∏

j=1

Slj (t ,0)

=
1
n!

(1
2

)n
E 0

[ p∑
j,k=1

∫ t

0

∫ t

0
γ
(
B(s)− B(r)

)
dsdr

]n
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Where is Feynman-Kac formula?

where B1, · · · ,Bp are independent Brownian motions which are
independent of Ẇ . Feynman-Kac reduces the problem to a
problem of large deviations.

Different from PAM, the fundamental solution G(t , x) does
not satisfy Chapman-Kolmogorov equation and therefore is not
a transition for any Markov process (such as Brownian motion).
Consequently, the above Feynman-Kac representation is
no-longer available in the hyperbolic setting.

However, we shall show below that the Laplacian
transform changes everything we just said in the prior
paragraph.
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Laplacian moment representation

The following moment representation plays a fundamental
role in our result:

Theorem (Representation of Stratonovich moment)
For any λ > 0, and n = 0,1,2, · · · ,∫ ∞

0
e−λtSn(t ,0)dt

=
1
n!

λ

2

(1
2

)n
∫ ∞

0
exp

{
− λ2

2
t
}
E 0

[ ∫ t

0
Ẇ

(
B(s)

)
ds

]n

dt a.s.

where B(s) is a d-dimensional Brownian motion independent of
Ẇ with B(0) = 0, and “E 0” is the expectation with respect to the
Brownian motion.
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Mathematical set-up
This relation largely depends on the specific form

Ĝ(t , ξ) ≡
∫
Rd

G(t , x)eiξ·xdx =
sin(|ξ|t)

|ξ|
.

of the Fourier transform of the fundamental solution G(t , x).
Unlike its Fourier transform, G(t , x) takes very different forms in
different dimensions. In the dimensions d = 1,2,3, for example,

G(t , x) =



1
2

1{|x |≤t} d = 1

1
2π

1{|x |≤t}√
t2 − |x |2

d = 2

1
4πt

σt(dx) d = 3
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Mathematical set-up

where σt(dx) is the surface measure on {x ∈ R3; |x | = t}.

The reason that we limit our discussion to d = 1,2,3
because these are only cases where G(t , x) ≥ 0.

A crucial and elementary observation is∫ ∞

0
e−λtG(t , x)dt =

1
2

∫ ∞

0
e−λ2t/2p(t , x)dt x ∈ Rd

for any λ > 0, where p(t , x) is the density of B(t):

p(t , x) =
1

(2πt)d/2 exp
{
− |x |2

2t

}
(t , x) ∈ R+ × Rd
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Laplacian moment representation

Indeed, the both sides has the same Fourier transform∫
Rd

eiξ·x
[ ∫ ∞

0
e−λtG(t , x)dt

]
dx

=

∫ ∞

0
e−λt sin |ξ|t

|ξ|
dt =

1
λ2 + |ξ|2

=
1
2

∫ ∞

0
e−λ2t/2 exp

{
− 1

2
|ξ|2t

}
dt

=

∫
Rd

eiξ·x
[

1
2

∫ ∞

0
e−λ2t/2p(t , x)dt

]
dx

for every ξ ∈ Rd .
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Laplacian moment representation

Recall the elementary identity

λ

∫ ∞

0
e−λt

∫
[0,t]n<

ds1 · · · dsn

n∏
k=1

φk(sk − sk−1)

=
n∏

k=1

∫ ∞

0
e−λtφk(t)dt

Here we recall the notation

[0, t ]n< =
{
(s1, · · · , sn) ∈ [0, t ]n; s1 < · · · < sn

}
and follow the convention s0 = 0.
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Laplacian moment representation

Therefore,∫ ∞

0
e−λtSn(t ,0)dt

=

∫ ∞

0
dte−λt

∫
(Rd )n

dx
∫
[0,t]n<

ds
( n∏

k=1

G(sk − sk−1, xk − xk−1)

)

×
( n∏

k=1

Ẇ (xk)

)

= λ−1
∫
(Rd )n

dx
( n∏

k=1

∫ ∞

0
e−λtG(t , xk − xk−1)dt

)( n∏
k=1

Ẇ (xk)

)
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Laplacian moment representation

= λ−1
(1

2

)n
∫
(Rd )n

dx
( n∏

k=1

∫ ∞

0
e−λ2t/2p(t , xk − xk−1)dt

)

×
( n∏

k=1

Ẇ (xk)

)
=

λ

2

(1
2

)n
∫ ∞

0
dt exp

{
− λ2

2
t
}∫

[0,t]n<

ds

×
∫
(Rd )n

dx
( n∏

k=1

p(sk − sk−1, xk − xk−1)

)( n∏
k=1

Ẇ (xk)

)
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Laplacian moment representation

Given (s1, · · · , sn) ∈ [0, t ]n<, the random vector(
B(s1), · · · ,B(sn)

)
has the joint density

fs1,··· ,sn(x1, · · · , xn)
∆
=

n∏
k=1

p(sk − sk−1, xk − xk−1)

So we have (recall that x0 = 0)∫
(Rd )n

dx
( n∏

k=1

p(sk − sk−1, xk − xk−1)

)( n∏
k=1

Ẇ (xk)

)

= E 0

n∏
k=1

Ẇ
(
B(sk)

)
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Laplacian moment representation

Finally,∫ ∞

0
e−λtSn(t ,0)dt

=
λ

2

(1
2

)n
∫ ∞

0
dt exp

{
− λ2

2
t
}∫

[0,t]n<

dsE 0

n∏
k=1

Ẇ
(
B(sk)

)
=

1
n!

λ

2

(1
2

)n
∫ ∞

0
exp

{
− λ2

2
t
}
E 0

[ ∫ t

0
Ẇ

(
B(s)

)
ds

]n

dt
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Laplacian moment representation

Corollary (Laplacian moment representation)
Given λ1, · · · , λp > 0,∫

(R+)p
dt1 · · · dtp exp

{
−

p∑
j=1

λj tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

=
(1

2

)3n 1
n!

( p∏
j=1

λj

2

)∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

λ2
j tj
}

× E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

n = 0,1,2, · · ·

where B1(t), · · · ,Bp(t) are independent d-dimensional Brownian
motions starting at 0.
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Laplacian moment representation

Proof.∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

λj tj
} ∑

l1+···+lp=2n

p∏
j=1

Slj (tj ,0)

=
∑

l1+···+lp=2n

p∏
j=1

∫ ∞

0
e−λj tSlj (t ,0)dt

=
∑

l1+···+lp=2n

( p∏
j=1

λj

2

(1
2

)lj
) p∏

j=1

1
lj !

∫ ∞

0
dte−λ2t/2E 0

[∫ t

0
Ẇ

(
B(s)

)
ds

]lj

=
(1

2

)2n( p∏
j=1

λj

2

)∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

λ2
j tj
}

× 1
(2n)!

E 0

[ p∑
j=1

∫ tj

0
Ẇ

(
Bj(s)

)
ds

]2n
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Laplacian moment representation

The remaining of the proof relies on the fact that
conditioning on the Brownian motions,

p∑
j=1

∫ tj

0
Ẇ

(
Bj(s)

)
ds

is normal with zero mean and the variance

p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

Chen (Dept of Mathematics, UTK) Hyperbolic Anderson equation
The 19th workshop on Markov Processes and Related Topics, Fuzhou
30 / 62



Laplacian moment representation

Consequently,

E

[ p∑
j=1

∫ tj

0
Ẇ

(
Bj(s)

)
ds

]2n

=
(2n)!
2nn!

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

Together with the computation by far, this completes the proof.
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Laplacian moment asymptotics
We now start the proof of the main theorem. The first step

is to show

lim
n→∞

1
n
log

1
n!

∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

= log 2M
4−α

2

Taking λ1 = · · · = λp = 1 in Laplacian moment representation, it
is equivalent to

lim
n→∞

1
n
log

1
(n!)2

∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

tj
}

× E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

= log 24M
4−α

2
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Upper bound of Laplacian moment
By Parseval’s indentity

p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr =

∫
Rd
µ(dξ)

∣∣∣∣ p∑
j=1

∫ tj

0
eiξ·Bj (s)ds

∣∣∣∣2

= (t1 + · · ·+ tp)2
∫
Rd
µ(dξ)

∣∣∣∣ p∑
j=1

tj
t1 + · · ·+ tp

1
tj

∫ tj

0
eiξ·Bj (s)ds

∣∣∣∣2

≤ (t1 + · · ·+ tp)
p∑

j=1

tj
∫
Rd
µ(dξ)

∣∣∣∣1tj
∫ tj

0
eiξ·Bj (s)ds

∣∣∣∣2

= (t1 + · · ·+ tp)
p∑

j=1

1
tj

∫ tj

0

∫ tj

0
γ
(
Bj(s)− Bj(r)

)
dsdr

d
= (t1 + · · ·+ tp)

p∑
j=1

t
2−α

2
j

∫ 1

0

∫ 1

0
γ
(
Bj(s)− Bj(r)

)
dsdr
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Upper bound of Laplacian moment
where the inequality follows from Jensen and the last step from
Brownian scaling and homogenity of γ(·).

So we have

E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≤ (t1 + · · ·+ tp)nE 0

[ p∑
j=1

t
2−α

2
j

∫ 1

0

∫ 1

0
γ
(
Bj(s)− Bj(r)

)
dsdr

]n

= (t1 + · · ·+ tp)n
∑

l1+···+lp=n

n!
l1! · · · lp!

×
p∏

j=1

t
2−α

2 lj
j E 0

[ ∫ 1

0

∫ 1

0
γ
(
B(s)− B(r)

)
dsdr

]lj
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Upper bound of Laplacian moment
and therefore∫

(R+)p
dt1 · · · dtp exp

{
− 1

2

p∑
j=1

tj
}
E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≤ n!
∑

l1+···+lp=n

1
l1! · · · lp!

{ p∏
j=1

E 0

[ ∫ 1

0

∫ 1

0
γ
(
B(s)− B(r)

)
dsdr

]lj}

×
∫
(R+)p

dt1 · · · dtp(t1 + · · ·+ tp)n exp
{
− 1

2

p∑
j=1

tj
} p∏

j=1

t
2−α

2 lj
j

= n!
∑

l1+···+lp=n

1
l1! · · · lp!

{ p∏
j=1

E 0

[ ∫ 1

0

∫ 1

0
γ
(
B(s)− B(r)

)
dsdr

]lj}

× 2p2
4−α

2 n
( p∏

j=1

Γ
(

1 +
2 − α

2
lj
))

Γ
(

p +
2 − α

2
n
)−1

Γ
(

p +
4 − α

2
n
)
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Upper bound of Laplacian moment

From the large deviation for self-intersection local time

lim
n→∞

1
n
log(n!)−α/2E 0

[ ∫ 1

0

∫ 1

0
γ(Bs−Br )dsdr

]n

= log 2α
( 4M

4 − α

) 4−α
2

That means: We are allowed to do the replacement

E 0

[ ∫ 1

0

∫ 1

0
γ
(
B(s)− B(r)

)
dsdr

]lj

≈ (lj !)α/2
(

2α
( 4M

4 − α

) 4−α
2

)lj

in our computation
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Upper bound of Laplacian moment

Using Stirling formula∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

tj
}
E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

⪯ n!2
4−α

2 n
(2 − α

2

)n
(

2α
( 4M

4 − α

) 4−α
2

)n

Γ
(

p +
2 − α

2
n
)−1

× Γ
(

p +
4 − α

2
n
) ∑

l1+···+lp=n

1

≈ (n!)224nM
4−α

2 n
(

n + p − 1
p − 1

)
≈ (n!)224nM

4−α
2 n
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Upper bound of Laplacian moment
In summary, we have established the upper bound

lim sup
n→∞

1
n
log

1
(n!)2

∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

tj
}

× E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≤ log 24M
4−α

2

In the following we prove the lower bound

lim inf
n→∞

1
n
log

1
(n!)2

∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

tj
}

× E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≥ log 24M
4−α

2
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Lower bound of Laplacian moment
By Cauchy-Schwartz inequality

p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr =

∫
Rd
µ(dξ)

∣∣∣∣ p∑
j=1

∫ tj

0
eiξ·Bj (s)ds

∣∣∣∣2

≥
[ ∫

Rd
µ(dξ)f (ξ)

( p∑
j=1

∫ tj

0
eiξ·Bj (s)ds

)]2

=

[ p∑
j=1

∫
Rd
µ(dξ)f (ξ)

(∫ tj

0
eiξ·Bj (s)ds

)]2

for any non-negative f (ξ) with f (−ξ) = f (ξ) and∫
Rd
|f (ξ)|2µ(dξ) = 1
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Lower bound of Laplacian moment
Therefore

E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≥ E 0

[ p∑
j=1

∫
Rd
µ(dξ)f (ξ)

(∫ tj

0
eiξ·Bj (s)ds

)]2n

=
∑

l1+···+lp=2n

(2n)!
l1! · · · lp!

p∏
j=1

E 0

[ ∫
Rd
µ(dξ)f (ξ)

(∫ tj

0
eiξ·Bj (s)ds

)]lj

= (2n)!
∑

l1+···+lp=2n

p∏
j=1

∫
(Rd )

lj
µ(dξ)

( lj∏
k=1

f (ξk)

)

×
∫
[0,tj ]

lj
<

ds
lj∏

k=1

exp

{
− sk − sk−1

2

∣∣∣ lj∑
i=k

ξi

∣∣∣2}
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Lower bound of Laplacian moment

∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

tj
}
E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≥ (2n)!
∑

l1+···+lp=2n

p∏
j=1

∫
(Rd )

lj
µ(dξ)

( lj∏
k=1

f (ξk)

)

×
∫ ∞

0
dte−t/2

∫
[0,t]

lj
<

ds
lj∏

k=1

exp

{
− sk − sk−1

2

∣∣∣ lj∑
i=k

ξi

∣∣∣2}

= 22n+1(2n)!
∑

l1+···+lp=2n

p∏
j=1

∫
(Rd )

lj
µ(dξ)

lj∏
k=1

f (ξk)
(

1 +
∣∣∣ lj∑

i=k

ξi

∣∣∣2)−1
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Lower bound of Laplacian moment

The spectral method yields that

lim
n→∞

1
n
log

∫
(Rd )n

µ(dξ)
n∏

k=1

f (ξk)
(

1 +
∣∣∣ n∑

i=k

ξi

∣∣∣2)−1

= sup
∥φ∥2=1

∫
Rd
µ(dξ)f (ξ)

[ ∫
Rd

dη
φ(η)φ(η + ξ)√

(1 + |η|2)(1 + |ξ + η|2)

]
∆
= ρ(f )

Consequently, we are allowed to do the replacement

∫
(Rd )

lj
µ(dξ)

lj∏
k=1

f (ξk)
(

1 +
∣∣∣ lj∑

i=k

ξi

∣∣∣2)−1
≈ ρ(f )lj
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Lower bound of Laplacian moment

Therefore,

lim inf
n→∞

1
n
log

1
(n!)2

∫
(R+)p

dt1 · · · dtp exp
{
− 1

2

p∑
j=1

tj
}

× E 0

[ p∑
j,k=1

∫ tj

0

∫ tk

0
γ
(
Bj(s)− Bk(r)

)
dsdr

]n

≥ log 24ρ2(f )

Finally, the desired lower bound follows from the relation

sup
∥f∥2=1

ρ2(f ) = sup
∥φ∥2=1

∫
Rd
µ(dξ)

[ ∫
Rd

dη
φ(η)φ(η + ξ)√

(1 + |η|2)(1 + |ξ + η|2)

]2

= M
4−α

2
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Taking “Laplacian inverse”

In summary, we have reached the conclusion that

lim
n→∞

1
n
log

1
n!

∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

= log 2M
4−α

2

As the last step, we now prove that

lim
n→∞

1
n
log(n!)3−α

( ∑
l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
)

= log
(1

2

)3−α

p4−α

(
2M1/2

4 − α

)4−α
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Taking “Laplacian inverse”

We first prove the upper bound∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

≥
∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj

(
min

1≤j≤p
tj , 0

)

=

{ ∑
l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
}

×
∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
}(

min
1≤j≤p

tj
)(4−α)n
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Taking “Laplacian inverse”
By the fact for the i.i.d. exp(1)-random variables τ1, · · · , τp,

min
1≤j≤p

τj ∼ exp(p),

∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
}(

min
1≤j≤p

tj
)(4−α)n

= p
∫ ∞

0
e−pt t (4−α)ndt =

(1
p

)(4−α)n
Γ
(

1 + (4 − α)n
)

Using Stirling formula we obtain the desired upper bound

lim sup
n→∞

1
n
log(n!)3−α

( ∑
l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
)

≤ log
(1

2

)3−α

p4−α

(
2M1/2

4 − α

)4−α
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Taking “Laplacian inverse”

The same argument can be adapted for the lower bound
with some extra effort. Let δ > 0 be fixed but small. When
(t1, · · · , tp) ∈

(
n 4−α−δ

p ,n 4−α+δ
p

)p,

tj ≤
4 − α + δ

p
n ≤ 4 − α + δ

4 − α− δ
min

1≤k≤p
tk j = 1, · · · ,p

So we have

∑
l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0) ≤
∑

l1+···+lp=2n

E
p∏

j=1

Slj

(4 − α + δ

4 − α− δ
min

1≤k≤p
tk ,0

)

=
(4 − α + δ

4 − α− δ
min

1≤k≤p
tk
)(4−α)n ∑

l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
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Taking “Laplacian inverse”
Therefore,∫

(n 4−α−δ
p , n 4−α+δ

p )p
dt1 · · · dtp exp

{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

≤
{ ∑

l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
}(4 − α + δ

4 − α− δ

)(4−α)n

×
∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
}(

min
1≤j≤p

tj
)(4−α)n

=

{ ∑
l1+···+lp=2n

E
p∏

j=1

Slj (1,0)
}(4 − α + δ

4 − α− δ

)(4−α)n

×
(1

p

)(4−α)n
Γ
(

1 + (4 − α)n
)
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Concentration of exponential times

To complete the proof for the lower bound, therefore, all
we need is to show∫

( n(4−α−δ)
p ,

n(4−α+δ)
p )p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

∼
∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0) (n → ∞)

for any small δ > 0. This will be proved later.
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Concentration of exponential times
First recall that

lim
n→∞

1
n
log

1
n!

∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

= log 2M
4−α

2

Working harder on the moment representation, we can prove
that for any λ1, · · · , λp > 0

lim sup
n→∞

1
n
log

1
n!

∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

λj tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

≤ log 2M
4−α

2 +
4 − α

2

p∑
j=1

λ−2
j log λ−2

j

λ−2
1 + · · ·+ λ−2

p

The correspondent lower bound is very likely, but we are not
able to prove it.
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Concentration of exponential times
Define the probability measures µn(A) on (R+)p

µn(A) =

∫
A

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

For our purpose, we need to show that

lim
n→∞

µn

((n(4 − α− δ)

p
,

n(4 − α + δ)

p
)p
)
= 1

For any (θ1, · · · , θp) ∈ Rp,

lim sup
n→∞

1
n
log

∫
(R+)p

exp
{ p∑

j=1

θj tj
}
µn(dt1 · · · dtp) ≤ Λ(θ1, · · · , θp)
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Concentration of exponential times
where

Λ(θ1, · · · , θp) =
4 − α

2

p∑
j=1

(1 − θj)
−2 log(1 − θj)

−2

(1 − θ1)−2 + · · ·+ (1 − θp)−2

when θ1, · · · , θp < 1, and Λ(θ1, · · · , θp) = +∞ if otherwise.

By the upper bound of Gärtner-Ellis theorem,

lim sup
n→∞

1
n
log µn(nF ) ≤ − inf

(t1,··· ,tp)∈F
Λ∗(t1, · · · , tp)

for every close set F ⊂ (R+)p, where

Λ∗(t1, · · · , tp) = sup
θ1,··· ,θp

{ p∑
j=1

θj tj − Λ(θ1, · · · , θp)
}
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Concentration of exponential times
It is not easy (perhaps) and unnecessary to find the close

form of Λ∗(·). Clearly, Λ∗(t1, · · · , tp) ≥ 0. Further, we claim that
Λ∗(t1, · · · , tp) > 0 whenever tj ̸= 4−α

p for any 1 ≤ j ≤ p.

Indeed, assume (t1, · · · , tp) ∈ (R+)p that makes
Λ∗(t1, · · · , tp) = 0. We must have

p∑
j=1

θj tj ≤
4 − α

2

p∑
j=1

(1 − θj)
−2 log(1 − θj)

−2

(1 − θ1)−2 + · · ·+ (1 − θp)−2

for every (θ1, · · · θp) ∈ (−∞,1)p. In particular, for given j , take
θj = θ and θk = 0 for k ̸= j :

θtj ≤
4 − α

2
(1 − θ)−2 log(1 − θ)−2

(p − 1) + (1 − θ)−2
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Concentration of exponential times
Thus,

tj ≤ (4 − α)
(1 − θ)−2

(p − 1) + (1 − θ)−2

1
θ
log(1 − θ)−1 θ > 0

tj ≥ (4 − α)
(1 − θ)−2

(p − 1) + (1 − θ)−2

1
θ
log(1 − θ)−1 θ < 0

Letting θ → 0+ and θ → 0− separately, we have tj = 4−α
p .

Write Gδ = (4−α−δ
p , 4−α+δ

p )p. We have, therefore,

inf
(t1,··· ,tp)∈Gc

δ

Λ∗(t1, · · · , tp) > 0

Taking F = Gc
δ in the large deviation upper bound,

lim sup
n→∞

1
n
log µn(nGc

δ ) < 0
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Concentration of exponential times

In particular,∫
nGδ

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0)

∼
∫
(R+)p

dt1 · · · dtp exp
{
−

p∑
j=1

tj
} ∑

l1+···+lp=2n

E
p∏

j=1

Slj (tj ,0) (n → ∞)

That is what we try to prove.
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Future challenges

Evidence suggests that compared to the parabolic
Anderson models, hyperbolic Anderson equation should be
more toleratent to the singularity of the Gaussian noise. We
therefore conjecture that the renormalized (in the sense of
Stratanovich) equation

∂2u
∂t2 (t , x) = ∆u(t , x) + (Ẇ (x)−∞)u(t , x)

u(0, x) = 1 and
∂u
∂t

(0, x) = 0 x ∈ Rd
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Future challenges

has solution in L2(Ω) (and therefore in all positive moment)
under the assumption∫

Rd

1
1 + |ξ|3

µ(dξ) < ∞

Further, we believe that under the homogeneinity

γ(cx) = c−αγ(x) c > 0, x ∈ Rd

the same result of intermittency holds. This is particularly true
for the setting of two-dimensional space white noise.

All of these are concluded positively in the Skorodhod
regime.
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Future challenges

Another case breaking our argument is when the
Gaussian noise depends on time, i.e., a mean zero Gaussian
field W (t , x) with the covariance

Cov
(

Ẇ (t , x), Ẇ (s, y)
)
= γ0(t − s)γ(x − y)

where γ0(·) = δ0(·) or | · |−α0 (with 0 < α0 < 1).

In the case when γ0(·) = δ0(·), Balan and Song (2019)
establish the existence under the Dalang’s condition and
compute the limit

lim
t→∞

1
t
log Eu2(t , x)
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Future challenges

In the Skorodhod regime, the existence is established
(Chen-Deya-Song-Tindal (2024+)) under the assumption

∫
Rd

(
1

1 + |ξ|2

) 3−α0
2

µ(dξ) < ∞
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Thank you!
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